

Accelerating Energy Sector Decarbonization through Waste-Derived Fuels and CCS Technology

Jochen STRÖHLE

Webinar

20th November 2024

09:00 – 09:30	 Introduction Decarbonizing the Energy Sector from an Operator's Perspective Project Overviews 	M. Kost (FORTUM) J. Ströhle (TU Darmstadt)
09:30 – 10:00	Pilot testing using waste-derived fuels Oxyfuel CFB Combustion Chemical Looping Combustion	A. Kuhn <i>(TU Darmstadt)</i> P. Mohn <i>(TU Darmstadt)</i>
10:00 – 10:30	 Corrosion Measurements In Waste-to-Energy Retrofit CFB Power Plants In Chemical Looping Combustion 	V. Barisic (Sumitomo SHI FW) M. Kaiser (CheMin)
10:30 - 10:45	Coffee break	
10:45 – 11:15	 Technology Upscaling Simulation of Full-Scale Co-Combustion CFB Power Plants Design of a Chemical Looping Combustion Demoplant 	P. Stamatopoulos (CERTH) S. Schmitt (Doosan Lentjes)
11:15 – 11:45	 Multi-Level Impact Assessment Techno-Economic & Life Cycle Assessment of Waste-to-Energy Plants Techno-Economic Assessment of CLC for Acetic Acid Production Life Cycle Assessment of Chemical Looping Combustion Plants for CCS 	M. Casa / M. Bogliolo (RINA-C) K. Atsonios (CERTH) I. Modahl (NORSUS)
11:45 – 12:30	 Outlook beyond the projects Insights from the 3 MWth CLC Demonstration Unit in China: Pushing the Boundaries of Clean Energy Conclusion, Outlook, and Open Discussion 	N. Vin (IFPEN) J. Ströhle (TU Darmstadt)

Overview of projects LOUISE and REBECCA

Jochen STRÖHLE

Accelerating Energy Sector Decarbonization through Waste-Derived Fuels and CCS Technology

Webinar

20th November 2024

PROJECT GOALS

Retrofit of existing coal-fired fluidized bed CHP plants

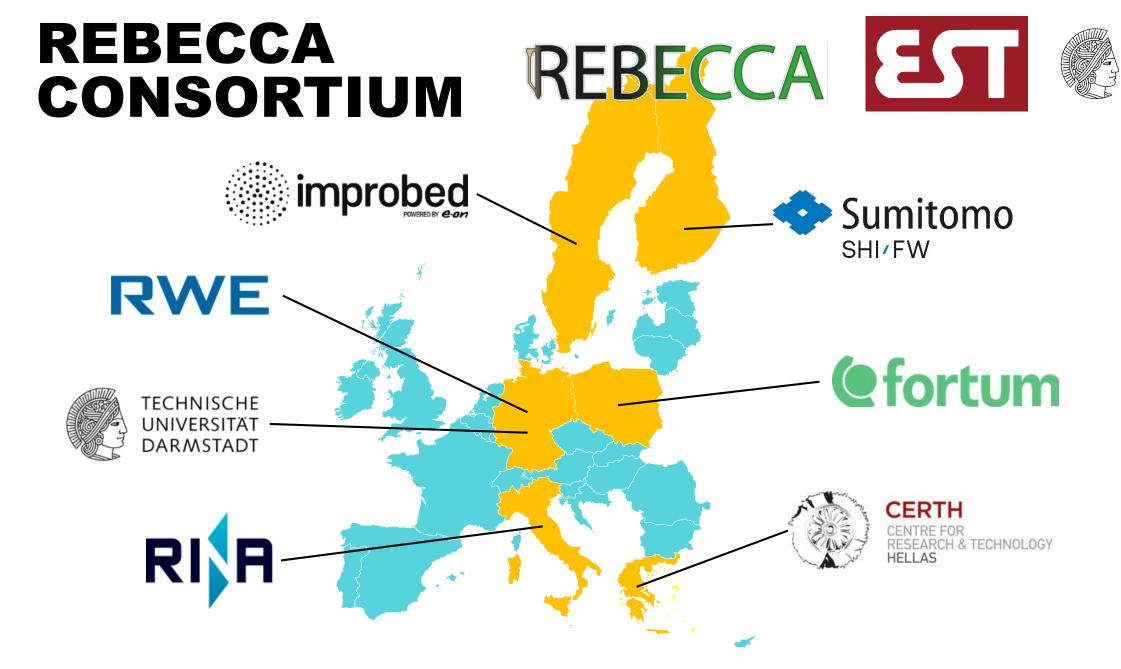
- Waste as fuel (replacing coal)
- CO₂ capture

New-built waste-to-energy plants with integrated CO₂ capture

Chemical looping combustion

REBECCA **OVERALL AIM**

Improve sustainability and economics of existing coal-fired CFB power plants



- by utilization of waste-derived fuels
 - Replacing coal by waste → lower CO₂ footprint
 - Active bed material → lower air excess, higher efficiency
- and CO₂ capture technology
 - Oxyfuel combustion → air separation required
 - Chemical looping combustion → high efficiency, low cost

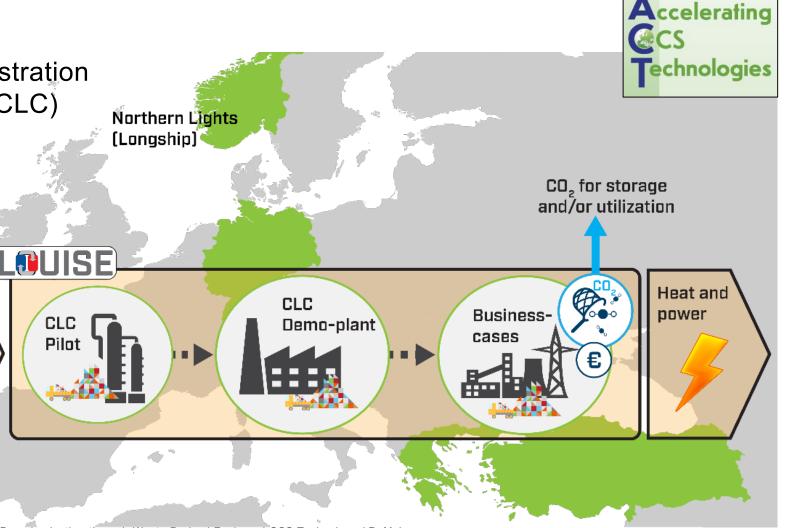
7/2021 - 12/2024

Fortum's CHP plant in Zabrze

TECHNISCHE UNIVERSITÄT

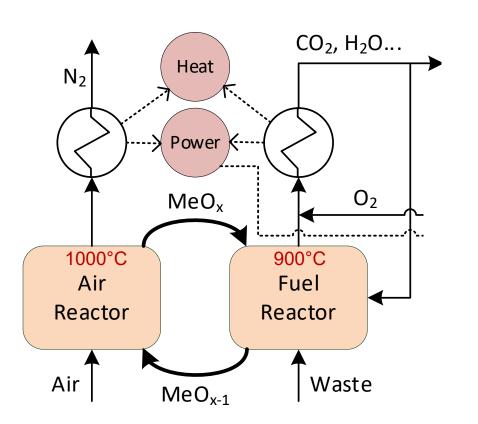
DARMSTADT

LOUISE OVERALL AIM



Prepare for pre-commercial demonstration of Chemical Looping Combustion (CLC) of solid waste-derived fuels

Waste


10/2021 - 12/2024

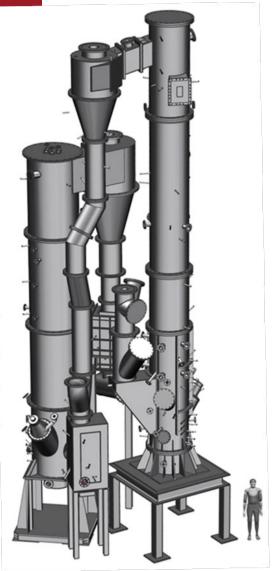
CHEMICAL LOOPING COMBUSTION (CLC)

- Inherent CO₂ separation
 - \rightarrow low cost
- "Clean" air reactor
 - → high electrical efficiency
- MeO_x re-use
 - → synergies w/ mineral & metal processing industries

KPI	Target
CO ₂ capture efficiency	> 90 %
Fuel reactor CO ₂ concentration	> 90 %
Net electrical efficiency	> 35 %
CO ₂ avoidance costs	< 25 €/t
Net CO ₂ emissions	< 0
Utilization of spent material	> 90 %

LOUISE CONSORTIUM

COMMON APECTS


EST

- Pilot testing at 1 MW_{th} scale
- Evaluation of fouling and corrosion
- Model development and scale-up
- Techno-economic, environmental, social assessment

Dr.-Ing. Jochen Ströhle

Energy Systems and Technology

Mail: jochen.stroehle@est.tu-darmstadt.de

Phone: +49 6151 16 23003

Otto-Berndt-Straße 2, 64287 Darmstadt / Germany

www.est.tu-darmstadt.de

This work has been subsidized through ACT (EC Project no. 691712) by the **German Federal Ministry of Economic Affairs and Energy** (grant no. 03EE5096), the **Research Council of Norway** (grant no. 329886), the **Greek General Secretariat for Research and Technology** (grant no. T12EPA5-00023), and the **Scientific and Technological Research Council of Turkey** (grant no. 221N265) (ACT LOUISE) and from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 871143.

