Fouling and Corrosion Measurements in Retrofit CFB with Increasing Share of Waste

Public Workshop

Vesna Barišić

20 Nov 2024

Fouling and Corrosion in Retrofit CFB with Increasing Share of Waste

Motivation and focus

Big picture

- Power & industrial decarbonization
- Alternatives for existing coal-firing fleet
 - A change in fuel diet is the first choice to reduce the carbon footprint of existing power plants

This work

- Partial or complete substitution of coal with waste-derived fuels (SRF)
 - + Low or negative price
 - + Permanent availability
 - + Moderate carbon footprint

Evaluate fouling and corrosion in retrofit scenarios with partial or complete substitution of coal with SRF

Fouling and Corrosion in Retrofit CFB with Increasing Share of Waste

Presentation Outline

Retrofitting Fluidized Bed Power Plants for Waste-Derived Fuels and CO₂ Capture (EU-RFCS)

- Goal to improve the sustainability of existing FB power plants via:
 - Substitution of coal by waste-derived fuels
 - Integration of CO2 capture technologies

Pilot tests

 CFB 1MW_{th}, TU Darmstadt, Germany

Field tests

 CFB 139 MW_{th} + 75 MW_e, CHP, Poland

Fouling and Corrosion in Retrofit CFB with Increasing Share of Waste Methods

Fouling and corrosion probes

- Air cooled
- Several base and WOL metal alloy coupons
- Exposures in furnace and convective pass

Online corrosion monitoring system

 Based on linear polarization resistance method

Analyses and characterization

- Visual inspection
- Material loss weight
- Composition by SEM-EDS

Pilot tests

CFB 1 MW_{th} at TU Darmstadt, Germany

Fuels tested:

- 1. 100% coal
- 2. 80 wt-% SRF + coal
- 3. 100% SRF
- SRF (Solid Recovered Fuel) was processed from municipal, commercial and industrial wastes, origin from Germany
- Coal was Polish bituminous class

Pilot tests – Furnace

CFB 1 MW_{th}, TU Darmstadt, Germany

Composition

- Addition of SRF increases alkali (Na, K) chlorides
- With 100% SRF HMs (Cu, Zn) may have also contributed to corrosion
- Coal co-firing lowered Cl in the deposit

Material loss

Highest material loss with 100% SRF

Pilot tests – Convective pass fouling probe

CFB 1 MW_{th}, TU Darmstadt, Germany

loose

deposit on lee-side

deposit all around, more around, more attached

Fouling and material loss

- ✤ Increase with addition of SRF
- Mainly due to alkali and HM compounds
- Coal has counteracting effect, but limited

Pilot tests – On-line corrosion probe

CFB 1 MW_{th}, TU Darmstadt, Germany

- Before HX
- Exposure continuous during all testing period
- Target surface T: 450 °C
- During 100% coal firing, corrosion was below the detection limit.
- Corrosion increased quickly after SRF was introduced and further increased with 100% SRF firing
- Main corrodent alkali chlorides

deposit mainly on wind-side

Field tests

CFB 139 MW_{th} + 75 MW_e, CHP, Poland

Fuel mix tested:

- 1. $40 45 %_{LHV} SRF + coal$
- 2. 45 50 %_{LHV} SRF + coal
 - a. w/o limestone
 - b. w/ limestone

Both fuels originated from Poland

- SRF (Solid Recovered Fuel) was processed from municipal and industrial wastes
- Coal was Polish bituminous class

Each fuel mix test lasted 5 days

Field test results

CFB 139 MW_{th} + 75 MW_e, CHP, Poland

Furnace wastage

- Exposure 2 hours
- Target surface T: 325 °C
- Low alloy steel (2% Cr)
 - * Test done with 1Cr coupon and 2.5 h exposure
- Ca, S, Al, Si; main corrodent alkali (Na, K) chlorides, found close to the metal surface
- Corrosion (14 m), combination of corrosion and erosion (19 m and 24 m)

Convective pass wastage

- Location before 1st convective HX; subjected to sootblowing
- Exposure 48 h
- Target surface T: 450 °C
- Ca, S, Al, Si and alkali chlorides, traces Zn, Cu
- with LS: fouling highest (not shown here), highest Ca and Cl, highest wastage (corrosion-erosion)

40 - 45 and 45 - 50 refer to SRF % in fuel mix with coal

Convective pass, on-line corrosion signal

- Target surface T: 450 °C
- Increase in SRF share increased corrosion signal
- Signal during LS feeding affected by increased sootblowing
- Composition of deposits similar to observed with fouling probe

Fouling and Corrosion in Retrofit CFB with Increasing Share of Waste Conclusions

- SRF fuels derived from municipal, commercial, industrial wastes have a high impact on increasing fouling and wastage in a CFB boiler designed for coal
 - Pilot and field tests showed that impacted areas are in furnace and convective pass.
- Addition of SRF to boilers designed for coal is requiring some degree of retrofit, extent depends on % and nature of both coal and SRF. Regarding materials:
 - The best performing alloy in the furnace of the pilot test rig, was the WOL 22Cr-60Ni for which material loss was still moderate with 100% SRF.
 - The performance of the higher alloyed grades materials (18Cr-11Ni, 25Cr-20Ni and 22Cr-60Ni (WOL)) in convective pass was quite similar. However, for them to be applicable with 100% SRF, temperatures would need to be lowered.

REBECCA

Retrofitting Fluidized Bed Power Plants for Waste-Derived Fuels and CO2 Capture

Acknowledgment

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 101034024

REBECCA

Thank you

For more information, please visit: www.shi-fw.com

