

LOUISE-REBECCA Webinar 20 November 2024

Techno-Economic & Life Cycle Assessment of Waste-To-Energy Plants

REBECCA

FAGILE

TECHNO-ECONOMIC ASSESSMENT

Copyright © 2023 REBECCA November 2021 This project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal and innovation program under Grant Agreement N° 952960 and Steel under grant agreement No. 101034024

*2**

Introduction

METHODOLOGY

Life Cycle Costing (LCC) is a structured method quantifying the economic impacts associated to the life cycle of a product, a service or a process.

LCC is regulated by a set of international rules, and it is structured in 4 steps:

Norm	Title	Goal and Scope Definition	⇒ [
Setac Guidelines	Environmental Life Cycle Costing: A Code of Practice			
ISO 14040:2006	Environmental management Life cycle assessment - Principles and framework	Life Cycle Inventory		Inte
ISO 14044:2018	Environmental management - Life cycle assessment - Requirements and guidelines			0
ISO 15686-5:2008	Buildings and constructed assets Service- life planning - Part 5: Life-cycle	Impact Assessment	≥	

Copyright © 2023 REBECCA November 2021

The project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal and innovation program under Grant Agreement N° 952960 and Steel under grant agreement No. 101034024 , 3^{*},

This project has received funding

Introduction

METHODOLOGY

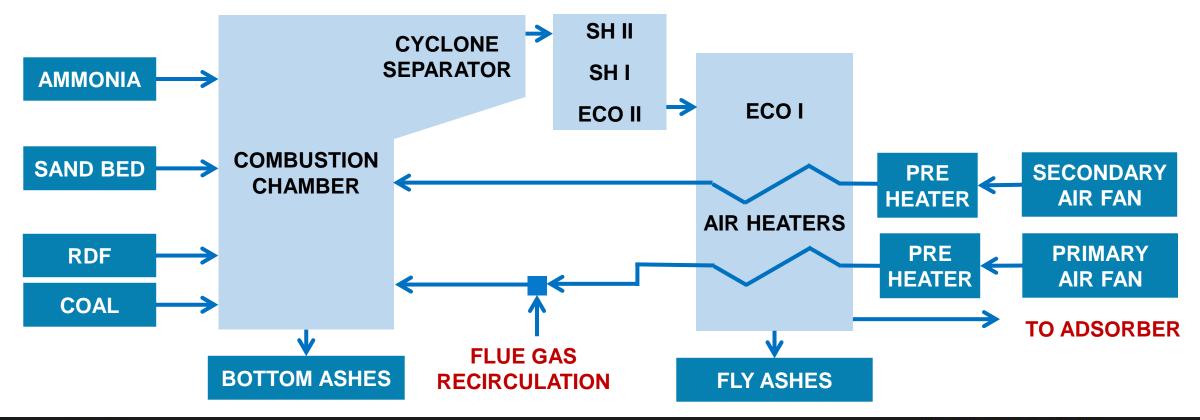
Zabrze CHP Plant is reference Baseline; Retrofit scenarios represent modifications to existing plant aimed at eliminating fossil fuel and reducing the environmental footprint:

- Retrofit 1: Fuel switch from coal/RDF mix to 100% RDF
- Retrofit 2: Retrofit 1 plus OCAC (Oxygen Carrier Aided Combustion) system

Technical and financial analysis are developed based on simulated performance:

- DESIGN CASES refer to nominal performance of equipment and systems; comparison with Baseline provides information about the CAPEX associated to the Retrofit.
- OPERATING CASES refer to average operation data; they provide yearly production and consumption parameters which are used to evaluate OPEX of the Retrofit.

This project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal and innovation program under Grant Agreement N° 952960 and Steel under grant agreement No. 101034024



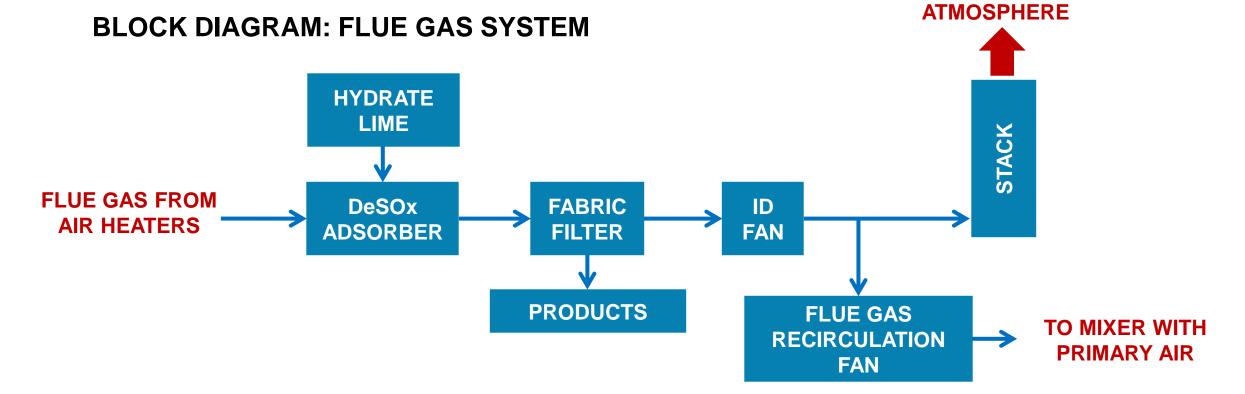
Baseline: Zabrze CHP Plant

BLOCK DIAGRAM: CFB STEAM GENERATOR

Copyright © 2023 REBECCA November 2021 This project has received funding The project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal

and innovation program under Grant Agreement N° 952960

and Steel under grant agreement No. 101034024



FLUE GAS TO

This project has received funding

Baseline: Zabrze CHP Plant

Copyright © 2023 REBECCA November 2021

The project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal and innovation program under Grant Agreement N° 952960 and Steel under grant agreement No. 101034024 *6 *

Technical Analysis

MAIN MODIFICATIONS REQUIRED TO ZABRZE CHP PLANT

	RETROFIT 1	RETROFIT 2
NEW RDF RECEIVING, STORAGE AND FEEDING SYSTEM	Х	Х
NEW NATURAL GAS BURNERS	Х	Х
COMBUSTION AIR SUPPLY (PRIMARY AND SECONDARY)	Х	Х
INDUCED DRAFT FAN, RECIRCULATION FAN	Х	
FABRIC FILTER REVAMPING	Х	
ASH HANDLING (BOTTOM AND FLY ASHES)	Х	Х
HOT LOOP UPGRADE (REFRACTORY, WATER WALLS)	Х	Х
CONVECTIVE SECTION UPGRADE AND RE-ARRANGEMENT	Х	Х

The project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal and innovation program under Grant Agreement N° 952960 and Steel under grant agreement No. 101034024

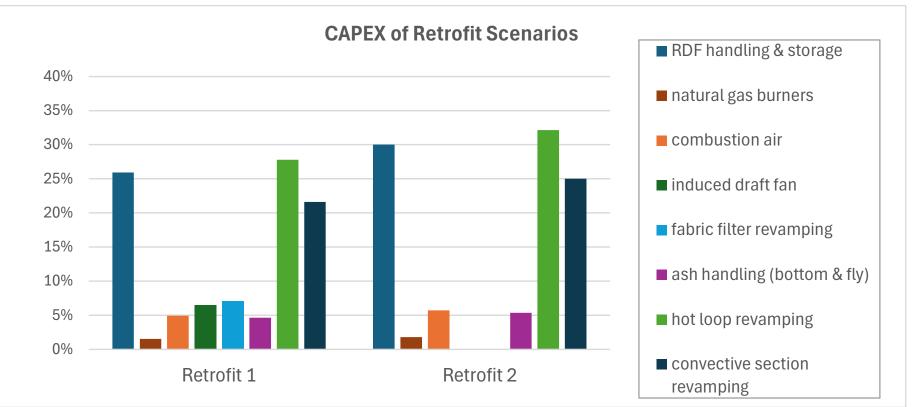
This project has received funding

Technical Analysis

YEARLY PRODUCTION AND CONSUMPTION DATA

		BASELINE	RETROFIT 1	RETROFIT 2
RDF CONSUMPTION	t/y	145,917	341,798	340,409
COAL CONSUMPTION	t/y	113,937	0	0
SAND BED CONSUMPTION	t/y	3,331	3,331	0
ILMENITE CONSUMPTION	t/y	0	0	3,331
HYDRATE LIME CONSUMPTION	t/y	2,913	2,544	2,534
AMMONIA SOLUTION CONSUMPTION	t/y	244	261	260
ASH DISPOSAL (BOTTOM + FLY)	t/y	47,112	58,579	58,341
ELECTRICITY SALES	MWh/y	340,129	333,639	339,226

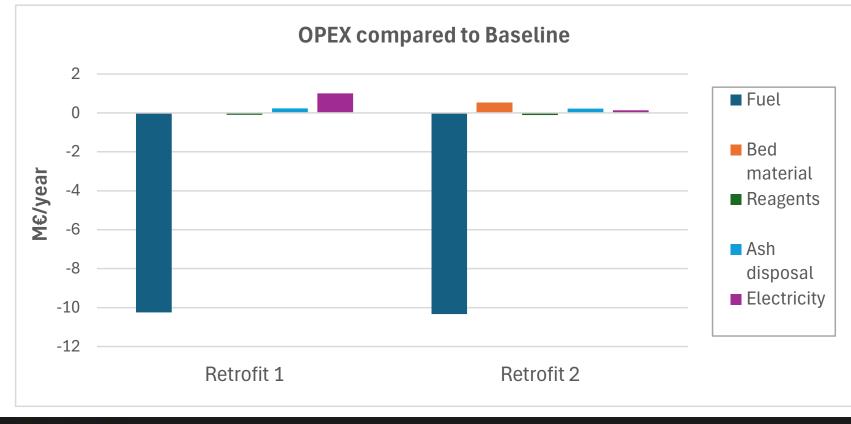
This project has received fundingThe project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coaland innovation program under Grant Agreement N° 952960and Steel under grant agreement


No. 101034024

Economic Analysis

CAPEX BREAKDOWN

Copyright © 2023 REBECCA November 2021


This project has received funding

The project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal and innovation program under Grant Agreement N° 952960 and Steel under grant agreement No. 101034024 , 9 ,

Economic Analysis

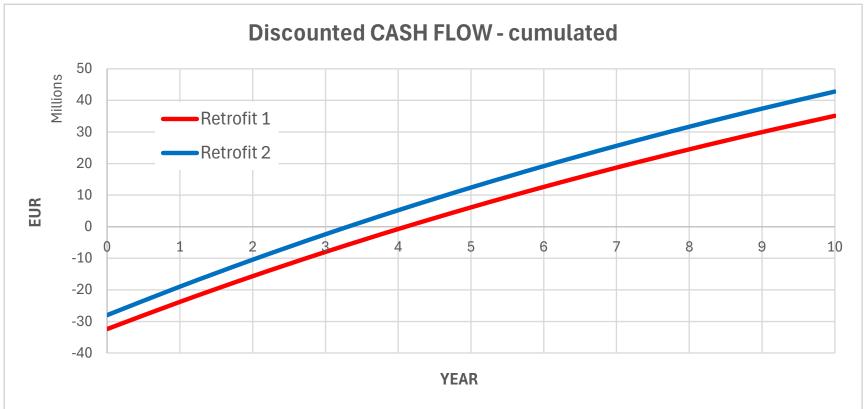
OPEX BREAKDOWN COMPARED TO BASELINE

FUEL PRICES USED IN THE STUDY

- Coal: 32 EUR/MWh
- RDF: 17 EUR/MWh

This project has received funding

Copyright © 2023 REBECCA November 2021


The project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal and innovation program under Grant Agreement N° 952960 and Steel under grant agreement No. 101034024 + 1 - 0,

Economic Analysis

CASH FLOW

Copyright © 2023 REBECCA November 2021 This project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal and innovation program under Grant Agreement N° 952960 and Steel under grant agreement No. 101034024

+ 1 - 1,

Interpretations/Conclusions

Retrofitting an existing CFB from coal to RDF fuel requires detailed analysis of the existing design and combustion mechanism; main modifications are due to increased corrosion and erosion associated to RDF and are common to both Retrofit Options:

- Hot loop protection
- Convective section re-arrangement and protection

Fuel switch to 100% RDF requires a new, large RDF handling system for receiving, storage, treating, transport, and feeding waste to the CFB furnace.

Retrofit 2 with OCAC (Oxygen Carrier Aided Combustion) system provides higher efficiency and leads to more convenient life-cycle investment.

This project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal and innovation program under Grant Agreement N° 952960 and Steel under grant agreement No. 101034024

ENVIRONMENTAL ASSESSMENT

CONTACTS:

- pierluca.vitale@rina.org
- marcello.casa@rina.org

Copyright © 2023 REBECCA November 2021 This project has received funding from the European Union's Horizon 2020 research from the Research Fund for Coal and innovation program under Grant Agreement N° 952960 and Steel under grant agreement No. 101034024

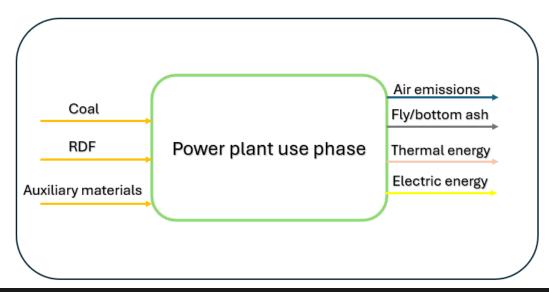
Methodology

Life Cycle Assessment (LCA) is a structured, comprehensive and internationally standardized methodology, quantifying the environmental impacts associated to the life cycle of a product, a service or a process.

LCA is regulated by a set of international rules, and it is structured in 4 steps:

Copyright © 2023 REBECCA

from the Research Fund for Coal and Steel under grant agreement No. 101034024



Goal and Scope definition

<u>Baseline scenario:</u> Fortum plant in **Zabrze** simulated <u>Innovative retrofitting:</u>

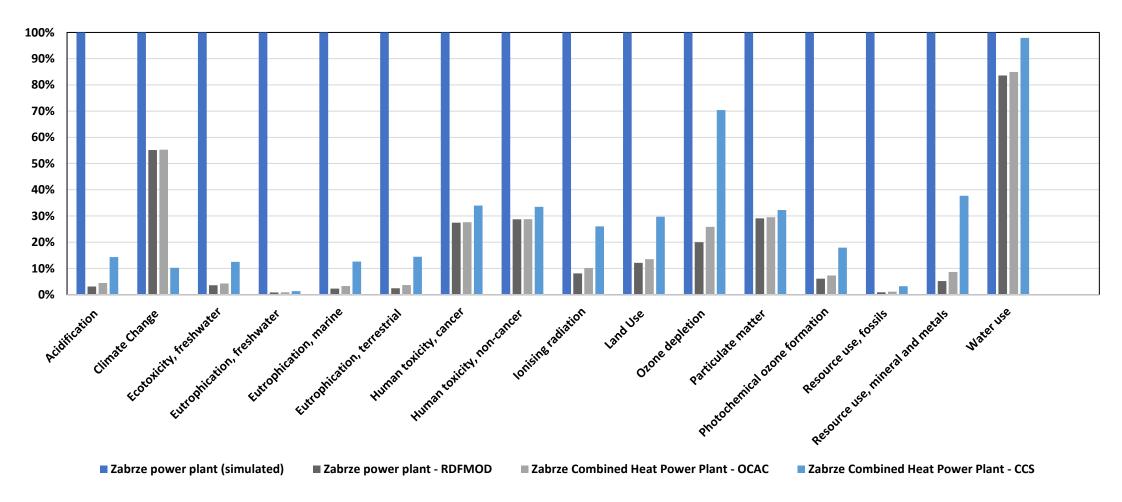
- Scenario 1: reach 100% RDF (simulated)
- Scenario 2: Scenario 1 + OCAC
- Scenario 3: Scenario 2 + CCS

Functional unit: 1 GWh of total energy produced
System boundaries: Plant operation (Energy demand, raw materials, waste)
Software used: Sphera
Main database used: Ecoinvent 3.8
Methodology used: EF v3.1

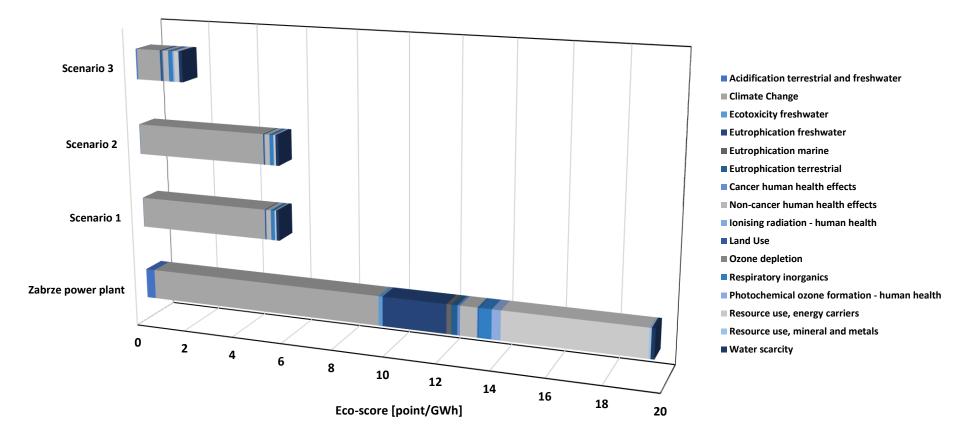
Life Cycle Inventory

	Reference period	Simulated year	hour/months/year	
Fortum - Zabrze	Lifetime (start up 2019)	4	years	
	Туре	Combined Heat Power PLANT		
	Operating hour	8000		
	Lifetime		years	
	Thermal output		MWth	
	Electrical capacity		MWe	
	Combined energy	200	MWeq	
			unit of measure	
	coal	1,69E+05	t	
	RDF	1,91E+05	t	
Type of fuel	LHV coal	2,19E+04	kJ/kg	
	LHV RDF	1,29E+04	kJ/kg	
	Total Input energy	6,17E+12	kJ	
		1,71E+09		
		2,14E+05	kW	
Production	Heat	1,03E+03	CWb	
	Electricity	5,74E+02		
	Total production	1,60E+03		
	Scaling factor	6,23E-04	1/GWh	

Consumptions	Water (woda surowa)	4,30E+05	m3
	LFO (Light fuel oil)	2,39E+02	
	Hydrated lime	4,03E+03	
Auxiliary materials	Ammonia water	3,37E+02	t
	Ammonia	25%	
	Water	75%	
	Sand	4,61E+03	t
Masta	Fly ash (ceneri leggere prodotte dal coincenerimento)	3,73E+04	t
Waste	bottom ash (sabbie dei reattori a letto fluidizzato)	3,17E+04	t
	CO2	5,77E+05	t
Emissions to air	NOx	3,50E+02	t
	SO2	2,81E+02	t
	Dust	2,41E+01	


Input and Output data for baseline

LCIA Life Cycle Impact Assessment



Copyright © 2023 REBECCA

Interpretation – Normalization & Weigthing

Normalization and weighting can be applied to aggregate the environmental impacts into a single score, reflecting the relative importance of each impact category. The weighting factors were sourced from the report "Development of a Weighting Approach for the Environmental Footprint" by the Joint Research Centre (JRC).

Interpretation/Conclusions

- The LCA analysis has shown that implementing the solution with CCS yields the best environmental results (around -90%) considering the current context and project objectives, specifically focusing on CO₂ eq emissions.
- The RDFMOD and OCAC solutions generally exhibit the same trend in terms of environmental impacts, but both provide significant environmental savings when compared to the baseline scenario (around -50%).

Thank you!

Copyright © 2023 REBECCA

