Techno-economic analysis of acetic acid production from CO₂ derived from chemical looping combustion

Kostis Atsonios, Christina Papaioannou, and Panagiotis Grammelis

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

2nd public workshop, 20 November 2024,

Business case description

CO₂ to Acetic Acid

Location: SOCAR refinery, Türkiye

Feedstock supply: 150,000 t/y green waste from from Izmir metropolitan area \rightarrow 100 MW_{th}

Power supply:

- 43.8MW from WT park
- Rest from grid

Oxygen carrier material (OCM): supplied from ENDEMIR steel plant, Ereğli/Zonguldak

Key mass and energy flows

Techno-economic analysis

CO ₂ cost	24.05	€/t _{CO2}
H ₂ cost	5.26	€/kg _{H2}

Remarks

When Post Oxidation Chamber is not included in the flue gas processing & cleaning:

- 25.4% less H₂ demand for Carbon Utilization owed to the existing H₂ and CO in rich-CO₂ stream
- 33% more available O₂ for selling
- 42% less steam generation
- 12.6% less acetic acid production due to CH₄ in the rich CO₂ stream and a purged stream from methanol synthesis to avoid accumulation

CO₂ capture cost

- Lower CAPEX because of absence of POC, ASU and power generation island
- Oxygen-carrier's cost: Major factor in OPEX
- CLC with green wastes targeting to heat production is a competitive and economically appealing option for CO₂ capture

Acetic Acid cost

- Electrolyser capital and operational cost is the most important factor that affects the overall production cost
- Two times greater than conventional one but there are prospects to become more competitive